Role of cAMP-PKA-PLC signaling cascade on dopamine-induced PKC-mediated inhibition of renal Na(+)-K(+)-ATPase activity.

نویسندگان

  • Pedro Gomes
  • P Soares-da-Silva
چکیده

We studied the molecular events set into motion by stimulation of D(1)-like receptors downstream of Na(+)-K(+)-ATPase, while measuring apical-to-basal ouabain-sensitive, amphotericin B-induced increases in short-circuit current in opossum kidney (OK) cells. The D(1)-like receptor agonist SKF-38393 decreased Na(+)-K(+)-ATPase activity (IC(50), 130 nM). This effect was prevented by the D(1)-like receptor antagonist SKF-83566, overnight cholera toxin treatment, the protein kinase A (PKA) antagonist H-89, or the PKC antagonist chelerythrine, but not the mitogen-activated PK inhibitor PD-098059 or phosphatidylinositol 3-kinase inhibitors wortmannin and LY-294002. Dibutyryl cAMP (DBcAMP) and phorbol 12,13-dibutyrate (PDBu) both effectively reduced Na(+)-K(+)-ATPase activity. PKA downregulation abolished the inhibitory effects of SKF-38393 and DBcAMP but not those of PDBu. PKC downregulation abolished inhibition by PDBu, SKF-38393, and DBcAMP. The phospholipase C (PLC) inhibitor U-73122 prevented inhibition by SKF-38393 and DBcAMP. However, DBcAMP increased PLC activity. Although OK cells express both G(s)alpha and G(q/11)alpha proteins, D(1)-like receptors are coupled to G(s)alpha proteins only, as evidenced by studies in cells treated overnight with specific antibodies raised against G(s)alpha and G(q/11)alpha proteins. We conclude that PLC and Na(+)-K(+)-ATPase are effector proteins for PKA and PKC, respectively, after stimulation of D(1)-like receptors coupled to G(s)alpha proteins, in a sequence of events that begins with adenylyl cyclase-PKA system activation followed by PLC-PKC system activation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Oxidative stress reduces renal dopamine D1 receptor-Gq/11alpha G protein-phospholipase C signaling involving G protein-coupled receptor kinase 2.

The dopamine D1 receptors (D1R), expressed in renal proximal tubules, participate in the regulation of sodium transport. A defect in the coupling of the D1R to its G protein/effector complex in renal tubules has been reported in various conditions associated with oxidative stress. Because G protein-coupled receptor kinases (GRKs) are known to play an important role in D1R desensitization, we te...

متن کامل

Gialpha3 protein-coupled dopamine D3 receptor-mediated inhibition of renal NHE3 activity in SHR proximal tubular cells is a PLC-PKC-mediated event.

This study evaluated the transduction pathway associated with type 3 Na(+)/H(+) exchanger (NHE3) activity-induced inhibition during dopamine D(3) receptor activation in immortalized renal proximal tubular epithelial cells from the spontaneously hypertensive rat. The dopamine D(3) receptor agonist 7-OH-DPAT decreased NHE3 activity, which was prevented by the D(2)-like receptor antagonist S-sulpi...

متن کامل

Dopamine D2 receptor-activated Ca2+ signaling modulates voltage-sensitive sodium currents in rat nucleus accumbens neurons.

Receptor-mediated dopamine (DA) modulation of neuronal excitability in the nucleus accumbens (NAc) has been shown to be critically involved in drug addiction and a variety of brain diseases. However, the mechanisms underlying the physiological or pathological molecular process of DA modulation remain largely elusive. Here, we demonstrate that stimulation of DA D2 class receptors (D2R) enhanced ...

متن کامل

Regulation of renal proximal tubule Na-K-ATPase by prostaglandins.

Prostaglandins (PGs) play a number of roles in the kidney, including regulation of salt and water reabsorption. In this report, evidence was obtained for stimulatory effects of PGs on Na-K-ATPase in primary cultures of rabbit renal proximal tubule (RPT) cells. The results of our real-time PCR studies indicate that in primary RPTs the effects of PGE(2), the major renal PG, are mediated by four c...

متن کامل

Dopamine D1A receptor regulation of phospholipase C isoform.

In LTK- cells stably transfected with rat D1A receptor cDNA, fenoldopam, a D1 agonist, increased phosphatidylinositol 4, 5-bisphosphate hydrolysis in a time-dependent manner. In the cytosol, phospholipase C (PLC) activity increased (50 +/- 7%) in 30 s, returned to basal level at 4 h, and decreased below basal values by 24 h; in the membrane, PLC activity also increased (36 +/- 13%) in 30 s, ret...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Renal physiology

دوره 282 6  شماره 

صفحات  -

تاریخ انتشار 2002